Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Andreas Lemmerer* and David G. Billing

School of Chemistry, University of the Witwatersrand, Private Bag 3, PO Wits 2050, South Africa

Correspondence e-mail:
andy@hobbes.gh.wits.ac.za

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.019$
$w R$ factor $=0.048$
Data-to-parameter ratio $=24.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Butane-1,4-diammonium diiodide

The crystal structure of the title compound, $\mathrm{C}_{4} \mathrm{H}_{14} \mathrm{~N}_{2}{ }^{2+} .2 \mathrm{I}^{-}$, exhibits ionic layers separated by hydrocarbon layers. The hydrocarbon layers stack in a herring-bone fashion and hydrogen bond to the iodide ions. The cation sits on a centre of inversion. The structure is compared with that of the related material butane-1,4-diammonium dichloride.

Comment

Organic-inorganic hybrid perovskites have been studied extensively. We are interested in determining the crystal strucures of simple monoammonium or diammonium hydrocarbon chains. While synthesizing the orange-coloured hybrid perovskite $\left(\mathrm{H}_{3} \mathrm{NC}_{4} \mathrm{H}_{8} \mathrm{NH}_{3}\right) \mathrm{PbI}_{4}$ (Billing \& Lemmerer, 2006), colourless crystals of the title compound, (I), appeared in the solution while cooling. A search of the Cambridge Structural Database (Version 5.27, November 2005 release; Allen 2002) revealed that the crystal structure of the related material butane-1,4-diammonium dichloride was studied 26 years ago (Chandrasekhar \& Pattabhi, 1980). The two structures are isostructural and form the same two-dimensional hydrogenbonding network in the $b c$ plane. The chloride, however, has an extra short $\mathrm{N} \cdots \mathrm{Cl}$ contact that links the two-dimensional layers along the a direction.

(I)

In (I), the butane-1,4-diammonium cation sits on a centre of inversion, and, hence, the asymmetric unit contains one-half of the cation together with one anion (Fig. 1). Fig. 2 clearly indicates a monodimensional arrangement in which a single layer of butane-1,4-diammonium cation is embedded between two consecutive ionic layers, forming an alternating hydro-carbon-ionic structure in the $a b$ plane. Each hydrocarbon layer is hydrogen bonded to the iodide ions above and below it. Perpendicular to this plane, the butane-1,4-diammonium cations pack in a herringbone arrangement (Fig. 3).

In the crystal structure, the intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{I}$ hydrogen bonds (Table 1) form an extensive network. Two ammonium H atoms, $\mathrm{H} 1 A$ and $\mathrm{H} 1 B$, participate in hydrogen bonding, forming rings with the graph-set notation $R_{2}^{2}(8)$. Hydrogen-bonded rings with the graph-set notation $R_{3}^{2}(13)$, which involve all three ammonium H atoms, are also observed in (I). The smaller ring has the shape of a rectangle, and both the long and the short edges are shared with the larger ring, which has five sides (Fig. 3). The fifth side is made up of the

Figure 1
View of (I), with the atomic numbering scheme and displacement ellipsoids at the 50% probability level. Atoms labelled with the superscript a are at the symmetry position $(-x,-y,-z)$. The dashed lines denote a hydrogen bond.

Figure 2
Packing diagram of (I). Each layer of butane-1,4-diammonium cations is sandwiched by a layer of iodide anions. The dashed lines denote hydrogen bonds.

Figure 3
The two-dimensional hydrogen-bonded (dashed lines) network in (I), viewed down the a axis.
butane-1,4-diammonium cation. All the edges of the rings are shared to form an infinite two-dimensional network of hydrogen bonds in the ac plane.

Experimental

$\mathrm{PbI}_{2}(0.148 \mathrm{~g}, 0.321 \mathrm{mmol})$ was dissolved in $47 \% \mathrm{HI}(3 \mathrm{ml})$ in a sample vial. Thereafter, $\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}(0.060 \mathrm{~g}, 0.809 \mathrm{mmol})$ was added and the precipitate was dissolved by refluxing for 2 h at 363 K . The solution was cooled slowly at $2 \mathrm{~K} \mathrm{~h}^{-1}$ to room temperature. Colourless crystals of the title compound were separated from the orange crystals. Analysis calculated for $\mathrm{C}_{4} \mathrm{H}_{14} \mathrm{I}_{2} \mathrm{~N}_{2}$: C 13.97, H 4.10, N 8.14\%; found: C 13.78, H 4.28, N 8.14\%.

Crystal data

$\mathrm{C}_{4} \mathrm{H}_{14} \mathrm{~N}_{2}{ }^{2+} .2 \mathrm{I}^{-}$
$M_{r}=343.97$
Monoclinic, $P 2_{b} / c$
$a=4.8983$ (8) А
$b=8.8210(14) \AA$
$c=11.981$ (2) \AA
$\beta=93.711(3)^{\circ}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: integration
(XPREP; Bruker, 1999)
$T_{\min }=0.262, T_{\max }=0.455$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.019$
$w R\left(F^{2}\right)=0.048$
$S=1.05$
954 reflections
39 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0253 P)^{2}\right. \\
& +0.1016 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}=0.001 \\
& \Delta \rho_{\text {max }}=0.60 \mathrm{e}_{\AA^{-3}} \\
& \Delta \rho_{\text {min }}=-0.59 \mathrm{e} \mathrm{~A}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.096 \text { (3) }
\end{aligned}
$$

Table 1
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{II}^{\mathrm{i}}$	0.89	2.84	$3.650(3)$	152
$\mathrm{~N} 1-\mathrm{H} 1 B \cdots \mathrm{I} 1^{\mathrm{ii}}$	0.89	2.72	$3.578(2)$	162
$\mathrm{~N} 1-\mathrm{H} 1 C \cdots \mathrm{I} 1$	0.89	2.74	$3.616(3)$	170

Symmetry codes: (i) $x,-y+\frac{3}{2}, z-\frac{1}{2}$; (ii) $-x+2, y+\frac{1}{2},-z+\frac{1}{2}$.
H atoms were geometrically positioned and refined in the ridingmodel approximation, with $\mathrm{C}-\mathrm{H}=0.97 \AA, \mathrm{~N}-\mathrm{H}=0.89 \AA$, and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}(\mathrm{N})$.

Data collection: SMART (Bruker, 1998); cell refinement: SAINTPlus (Bruker, 1999); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

The University of the Witwatersrand is thanked for the award of a research grant and for providing the infrastructure required to do this work.

organic papers

References

Allen, F. H. (2002). Acta Cryst. B58, 380-383
Billing, D. G. \& Lemmerer, A. (2006). In preparation.
Brandenburg, K. (1999). DIAMOND. Version 2.1e. Crystal Impact GbR, Bonn, Germany.
Bruker (1998). SMART-NT. Version 5.050. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (1999). SAINT-Plus. Version 6.02 (including XPREP). Bruker AXS Inc., Madison, Wisconsin, USA.
Chandrasekhar, K. \& Pattabhi, V. (1980). Acta Cryst. B36, 2486-2488.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

